1. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., & Wallach, H. (2018). A reductions approach to fair classification. arXiv:180302453
2. Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. NIPS Tutorial.
3. Blum, A., & Stangl, K. (2019). Recovering from biased data: Can fairness constraints improve accuracy? arXiv:191201094
4. Calders, T., & Verwer, S. (2010). Three Naive Bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2), 277–292.
5. Calders, T., Kamiran, F., & Pechenizkiy, M. (2009). Building classifiers with independency constraints. In IEEE International Conference on Data Mining Workshops (pp. 13–18).