Online learning of network bottlenecks via minimax paths

Author:

Åkerblom Niklas,Hoseini Fazeleh SadatORCID,Haghir Chehreghani Morteza

Abstract

AbstractIn this paper, we study bottleneck identification in networks via extracting minimax paths. Many real-world networks have stochastic weights for which full knowledge is not available in advance. Therefore, we model this task as a combinatorial semi-bandit problem to which we apply a combinatorial version of Thompson Sampling and establish an upper bound on the corresponding Bayesian regret. Due to the computational intractability of the problem, we then devise an alternative problem formulation which approximates the original objective. Finally, we experimentally evaluate the performance of Thompson Sampling with the approximate formulation on real-world directed and undirected networks.

Funder

VINNOVA

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference45 articles.

1. Agrawal, S., Goyal, N. (2012) Analysis of thompson sampling for the multi-armed bandit problem. In: Mannor, S., Srebro, N., Williamson, R.C. (eds.) Proceedings of the 25th Annual Conference on Learning Theory. Proceedings of Machine Learning Research. vol. 23, pp. 39–13926. PMLR, Edinburgh, Scotland.

2. Åkerblom, N., Chen, Y., Haghir Chehreghani, M. (2020) An online learning framework for energy-efficient navigation of electric vehicles. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), pp. 2051–2057. 10.24963/ijcai.2020/284

3. Auer, P. (2003). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research., 3(null), 397–422.

4. Batagelj, V., Mrvar, A. (2006) Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed: 2021-09-08

5. Beebe, N.H.F. (2002) Nelson H. F. Beebe’s Bibliographies Page. http://www.math.utah.edu/~beebe/bibliographies.html. Accessed: 2021-09-08

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and Application of Online Learning System Based on Artificial Intelligence;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

2. The Intelligent Tutoring System AI-VT with Case-Based Reasoning and Real Time Recommender Models;Lecture Notes in Computer Science;2024

3. Online learning of energy consumption for navigation of electric vehicles;Artificial Intelligence;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3