A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes

Author:

Benavoli AlessioORCID,Azzimonti Dario,Piga Dario

Abstract

AbstractSkew-Gaussian Processes (SkewGPs) extend the multivariate Unified Skew-Normal distributions over finite dimensional vectors to distribution over functions. SkewGPs are more general and flexible than Gaussian processes, as SkewGPs may also represent asymmetric distributions. In a recent contribution, we showed that SkewGP and probit likelihood are conjugate, which allows us to compute the exact posterior for non-parametric binary classification and preference learning. In this paper, we generalize previous results and we prove that SkewGP is conjugate with both the normal and affine probit likelihood, and more in general, with their product. This allows us to (i) handle classification, preference, numeric and ordinal regression, and mixed problems in a unified framework; (ii) derive closed-form expression for the corresponding posterior distributions. We show empirically that the proposed framework based on SkewGP provides better performance than Gaussian processes in active learning and Bayesian (constrained) optimization. These two tasks are fundamental for design of experiments and in Data Science.

Funder

University of Dublin, Trinity College

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot off the Press: Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. A Nonparametric Error Model for Pulsed Waveform Feature Extractors;2024 IEEE Radar Conference (RadarConf24);2024-05-06

3. Bayesian Optimization For Choice Data;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

4. Bayesian Conjugacy in Probit, Tobit, Multinomial Probit and Extensions: A Review and New Results;Journal of the American Statistical Association;2023-03-03

5. Bagged Ensemble of Gaussian Process Classifiers for Assessing Rockburst Damage Potential with an Imbalanced Dataset;Mathematics;2022-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3