Permutation-invariant linear classifiers

Author:

Lausser Ludwig,Szekely Robin,Kestler Hans A.ORCID

Abstract

AbstractInvariant concept classes form the backbone of classification algorithms immune to specific data transformations, ensuring consistent predictions regardless of these alterations. However, this robustness can come at the cost of limited access to the original sample information, potentially impacting generalization performance. This study introduces an addition to these classes—the permutation-invariant linear classifiers. Distinguished by their structural characteristics, permutation-invariant linear classifiers are unaffected by permutations on feature vectors, a property not guaranteed by other non-constant linear classifiers. The study characterizes this new concept class, highlighting its constant capacity, independent of input dimensionality. In practical assessments using linear support vector machines, the permutation-invariant classifiers exhibit superior performance in permutation experiments on artificial datasets and real mutation profiles. Interestingly, they outperform general linear classifiers not only in permutation experiments but also in permutation-free settings, surpassing unconstrained counterparts. Additionally, findings from real mutation profiles support the significance of tumor mutational burden as a biomarker.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Universität Ulm

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Abe, S. (2010). Support vector machines for pattern classification. Berlin: Springer.

2. Anthony, M. H. G., & Biggs, N. (1997). Computational learning theory (Vol. 30). Cambridge: Cambridge University Press.

3. Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). Berlin: Springer.

4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

5. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3