1. Blum, A., Ligett, K., & Roth, A. (2008). A learning theory approach to non-interactive database privacy. In C. Dwork (Ed.), STOC (pp. 609–618). New York: ACM.
2. Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011). Differentially private empirical risk minimization. Journal of Machine Learning Research, 12, 1069–1109.
3. Ding, B., Winslett, M., Han, J., & Li, Z. (2011). Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD conference (pp. 217–228).
4. Lecture notes in computer science;C. Dwork,2006
5. Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In S. Halevi & T. Rabin (Eds.), Lecture notes in computer science (Vol. 3876, pp. 265–284). Berlin: Springer.