1. Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hidden Markov support vector machines. In Proceedings of the 20th international conference on machine learning (ICML) (pp. 3–10), Washington, DC.
2. Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36(1–2), 105–139.
3. Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html
4. Chelba, C., & Acero, A. (2004). Conditional maximum likelihood estimation of naive Bayes probability models using rational function growth transform (Technical Report MSR-TR-2004-33). Microsoft.
5. Chickering, D. M., & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2–3), 181–212.