A survey on semi-supervised learning

Author:

van Engelen Jesper E.ORCID,Hoos Holger H.ORCID

Abstract

AbstractSemi-supervised learning is the branch of machine learning concerned with using labelled as well as unlabelled data to perform certain learning tasks. Conceptually situated between supervised and unsupervised learning, it permits harnessing the large amounts of unlabelled data available in many use cases in combination with typically smaller sets of labelled data. In recent years, research in this area has followed the general trends observed in machine learning, with much attention directed at neural network-based models and generative learning. The literature on the topic has also expanded in volume and scope, now encompassing a broad spectrum of theory, algorithms and applications. However, no recent surveys exist to collect and organize this knowledge, impeding the ability of researchers and engineers alike to utilize it. Filling this void, we present an up-to-date overview of semi-supervised learning methods, covering earlier work as well as more recent advances. We focus primarily on semi-supervised classification, where the large majority of semi-supervised learning research takes place. Our survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches and algorithms developed over the past two decades, with an emphasis on the most prominent and currently relevant work. Furthermore, we propose a new taxonomy of semi-supervised classification algorithms, which sheds light on the different conceptual and methodological approaches for incorporating unlabelled data into the training process. Lastly, we show how the fundamental assumptions underlying most semi-supervised learning algorithms are closely connected to each other, and how they relate to the well-known semi-supervised clustering assumption.

Funder

Leiden University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference215 articles.

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., & Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283).

2. Abney, S. (2002). Bootstrapping. In Proceedings of the 40th annual meeting on association for computational linguistics, association for computational linguistics (pp. 360–367).

3. Anderberg, M. R. (1973). Cluster analysis for applications. Cambridge: Academic Press.

4. Azran, A. (2007). The rendezvous algorithm: Multiclass semi-supervised learning with Markov random walks. In Proceedings of the 24th international conference on machine learning (pp. 49–56).

5. Bachman, P., Alsharif, O., & Precup, D. (2014). Learning with pseudo-ensembles. In Advances in neural information processing systems (pp. 3365–3373).

Cited by 1483 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3