Learning logic programs by explaining their failures

Author:

Morel RolfORCID,Cropper Andrew

Abstract

AbstractScientists form hypotheses and experimentally test them. If a hypothesis fails (is refuted), scientists try to explain the failure to eliminate other hypotheses. The more precise the failure analysis the more hypotheses can be eliminated. Thus inspired, we introduce failure explanation techniques for inductive logic programming. Given a hypothesis represented as a logic program, we test it on examples. If a hypothesis fails, we explain the failure in terms of failing sub-programs. In case a positive example fails, we identify failing sub-programs at the granularity of literals. We introduce a failure explanation algorithm based on analysing branches of SLD-trees. We integrate a meta-interpreter based implementation of this algorithm with the test-stage of the Popper ILP system. We show that fine-grained failure analysis allows for learning fine-grained constraints on the hypothesis space. Our experimental results show that explaining failures can drastically reduce hypothesis space exploration and learning times.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Reference44 articles.

1. Ahlgren, J., & Yuen, S.Y. (2013). Efficient program synthesis using constraint satisfaction in inductive logic programming. JMLR.

2. Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. AIJ.

3. Bundy, A., & Mitrovic, B. (2016). Reformation: A domain-independent algorithm for theory repair. Technical report, University of Edinburgh.

4. Caballero, R., Riesco, A., & Silva, J. (2017). A survey of algorithmic debugging. ACM Computing Surveys, 50, 1–35.

5. Cheney, J., Chiticariu, L., & Tan, W. C. (2009). Provenance in databases: Why, how, and where. Found. Trends Databases, 1, 379–474.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3