Upper and lower bounds for complete linkage in general metric spaces

Author:

Arutyunova Anna,Großwendt Anna,Röglin Heiko,Schmidt Melanie,Wargalla Julian

Abstract

AbstractIn a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings of a finite metric space $$(P,{{\,\textrm{dist}\,}})$$ ( P , dist ) . Starting with the clustering where every point forms its own cluster, one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known and popular algorithm to compute such clusterings: in every step it merges the two clusters whose union has the smallest radius (or diameter) among all currently possible merges. We prove that the radius (or diameter) of every k-clustering computed by complete linkage is at most by factor O(k) (or $$O(k^{\ln (3)/\ln (2)})=O(k^{1{.}59})$$ O ( k ln ( 3 ) / ln ( 2 ) ) = O ( k 1.59 ) ) worse than an optimal k-clustering minimizing the radius (or diameter). Furthermore we give a negative answer to the question proposed by Dasgupta and Long (J Comput Syst Sci 70(4):555–569, 2005. https://doi.org/10.1016/j.jcss.2004.10.006), who show a lower bound of $$\Omega (\log (k))$$ Ω ( log ( k ) ) and ask if the approximation guarantee is in fact $$\Theta (\log (k))$$ Θ ( log ( k ) ) . We present instances where complete linkage performs poorly in the sense that the k-clustering computed by complete linkage is off by a factor of $$\Omega (k)$$ Ω ( k ) from an optimal solution for radius and diameter. We conclude that in general metric spaces complete linkage does not perform asymptotically better than single linkage, merging the two clusters with smallest inter-cluster distance, for which we prove an approximation guarantee of O(k).

Funder

Deutsche Forschungsgemeinschaft

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3