Susceptibility to the fungal plant pathogen Austropuccinia psidii is related to monoterpene production in Australian Myrtaceae species

Author:

Manea AnthonyORCID,Tabassum Samiya,Fernandez Winzer Laura,Leishman Michelle R.

Abstract

AbstractIn 2010, the fungal plant pathogen that causes Myrtle rust, Austropuccinia psidii, which is native to South America, was first detected in Australia and has since had significant impacts on several Australian Myrtaceae species. Despite this, our understanding of the role secondary metabolites play in plant susceptibility to A. psidii is limited. This study aimed to determine: (1) whether secondary metabolite (phenolics, terpenes) production is induced after A. psidii inoculation and if so, (2) how their production relates to A. psidii susceptibility. To test these aims, we selected seven Myrtaceae species that have a wide range of within-species variability in their susceptibility to A. psidii. We found that five of the study species significantly increased either their phenolic or sesquiterpene production post-inoculation suggesting their pre-inoculation secondary metabolite levels were not sufficient to combat A. psidii infection. The two species (Angophora costata and Corymbia citriodora) that did not increase their secondary metabolite production post-inoculation tended to have the greatest pre-inoculation production levels amongst the species. Interestingly, across all species, monoterpenes were the only secondary metabolite found to reduce plant susceptibility to A. psidii. This study contributes to our limited understanding of the role that secondary metabolites play in plant susceptibility to A. psidii. In light of these findings, future research should aim to identify biomarkers (e.g. individual chemical compounds) that confer resistance to A. psidii, so that individuals with these biomarkers can be utilised in commercial and conservation projects.

Funder

Macquarie University

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3