Climate change and more disturbed land-use types will further the invasion of a non-native annual grass, Ventenata dubia

Author:

Adhikari ArjunORCID,Mangold Jane,Mainali Kumar P.,Rew Lisa J.

Abstract

AbstractIdentification of suitable habitat for invasive weeds and their projected infestation extent across different land use cover types under a changing climate is crucial for the broad management goals of prevention, detection, and rapid response. In this study, we adopted an ensemble approach of species distribution models to project potential habitat of the invasive annual grass, Ventenata dubia, within the Gallatin County and along its road corridors, in Montana, USA, under current and future climates. The model prediction of V. dubia habitat was excellent with an AUC value of > 0.90. The climate predictors with most influence on V. dubia occurrence were precipitation, potential evapo-transpiration, relative humidity, vapor pressure deficit, and solar radiation for growing season months. Under current climate, the model projected 243 and 1,371 km2 coverage of V. dubia along road corridors and the entire County, respectively. The projected coverage of V. dubia was greatest for road corridors (239% under RCP4.5 and 302% under RCP8.5) compared to that of Gallatin County (127% under RCP4.5 and 241% under RCP8.5). Among the land use cover types, the model projected greatest expansion of V. dubia across agriculture land with 425% and 484%, and grasslands with 278% and 442% under RCP4.5 and RCP8.5 respectively. Our modelling approach suggests that the changing climate will facilitate spread and establishment of non-native species in disturbed habitats. We conclude that V. dubia with a short history of invasion is expanding at an alarming rate and requires greater investment in detection and monitoring to prevent further expansion.

Funder

Britton Fund

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3