Abstract
AbstractFallopia japonica and Impatiens glandulifera are major plant invaders on a global scale that often become dominant in riparian areas. However, little is known about how these species affect interactions in soil–plant systems. The aim of this study was to investigate the impact of both species on abiotic and biotic soil properties, with a special focus on fungi. We investigated eight sites along small streams invaded by F. japonica and I. glandulifera, respectively, and compared each with nearby sites dominated by the native species Urtica dioica. Three different types of samples were collected: bulk soil, rhizosphere soil and roots from invasive and native stands at each site. Bulk soil samples were analysed for soil physicochemical, microbial properties (soil microbial respiration and ergosterol) and soil arthropod abundance (Acari and Collembola). Soil respiration was also evaluated in rhizosphere samples. The fungal community composition of both bulk soil and roots were analysed using a metabarcoding approach. Soil physicochemical properties as well as soil microbial activity, fungal biomass and soil fungal operational unit taxonomic unit (OTU) richness did not differ between invaded and native riparian habitats, indicating only minor belowground impacts of the two invasive plant species. Soil microbial activity, fungal biomass and soil fungal OTU richness were rather related to the soil physicochemical properties. In contrast, Acari abundance decreased by 68% in the presence of F. japonica, while Collembola abundance increased by 11% in I. glandulifera sites. Moreover, root-associated fungal communities differed between the invasive and native plants. In F. japonica roots, fungal OTU richness of all investigated ecological groups (mycorrhiza, endophytes, parasites, saprobes) were lower compared to U. dioica. However, in I. glandulifera roots only the OTU richness of mycorrhiza and saprobic fungi was lower. Overall, our findings show that F. japonica and I. glandulifera can influence the abundance of soil arthropods and are characterized by lower OTU richness of root-associated fungi.
Funder
Deutsche Forschungsgemeinschaft
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献