Genomic databanks provide robust assessment of invasive mosquito movement pathways and cryptic establishment

Author:

Schmidt Thomas L.ORCID,Endersby-Harshman Nancy M.,Kurucz Nina,Pettit William,Krause Vicki L.,Ehlers Gerhard,Muzari Mutizwa Odwell,Currie Bart J.,Hoffmann Ary A.ORCID

Abstract

AbstractBiosecurity strategies that aim to restrict the spread of invasive pests can benefit from knowing where incursions have come from and whether cryptic establishment has taken place. This knowledge can be acquired with genomic databanks, by comparing genetic variation in incursion samples against reference samples. Here we use genomic databanks to characterise incursions of two mosquito species within Australia, and to observe how genomic tracing methods perform when databank samples have limited genetic differentiation and were collected tens of generations ago. We used a deep learning method to trace a 2021 invasion ofAedes aegyptiin Tennant Creek, Northern Territory, to Townsville, Queensland, and to trace two years ofAe. albopictusincursions to two specific islands in the Torres Strait. Tracing had high precision despite 30–70 generations separating incursion and reference samples, and cross-validation of reference samples assigned them to the correct origin in 87% of cases. Similar precision was not achieved with PCAs, which performed particularly poorly for tracing when the invasion had been subject to strong drift effects. Targeted assays also provided additional information on the origin of the Tennant CreekAe. aegypti, in this case by comparingWolbachiainfection data and mitochondrial DNA variation. Patterns of relatedness and inbreeding indicated that Tennant Creek was likely invaded by one family ofAe. aegypti, while Torres Strait incursions were independent and indicated no cryptic establishment. Our results highlight the value of genomic databanks that remain informative over years and for a range of biological conditions.

Funder

Department of Health, Australian Government

Queensland Health

National Health and Medical Research Council

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3