Integrating an individual-based model with approximate Bayesian computation to predict the invasion of a freshwater fish provides insights into dispersal and range expansion dynamics

Author:

Dominguez Almela VictoriaORCID,Palmer Stephen C. F.,Gillingham Phillipa K.,Travis Justin M. J.,Britton J. Robert

Abstract

AbstractShort-distance dispersal enables introduced alien species to colonise and invade local habitats following their initial introduction, but is often poorly understood for many freshwater taxa. Knowledge gaps in range expansion of alien species can be overcome using predictive approaches such as individual based models (IBMs), especially if predictions can be improved through fitting to empirical data, but this can be challenging for models having multiple parameters. We therefore estimated the parameters of a model implemented in the RangeShifter IBM platform by approximate Bayesian computation (ABC) in order to predict the further invasion of a lowland river (Great Ouse, England) by a small-bodied invasive fish (bitterling Rhodeus sericeus). Prior estimates for parameters were obtained from the literature and expert opinion. Model fitting was conducted using a time-series (1983 to 2018) of sampling data at fixed locations and revealed that for 5 of 11 model parameters, the posterior distributions differed markedly from prior assumptions. In particular, sub-adult maximum emigration probability was substantially higher in the posteriors than priors. Simulations of bitterling range expansion predicted that following detection in 1984, their early expansion involved a relatively high population growth rate that stabilised after 5 years. The pattern of bitterling patch occupancy was sigmoidal, with 20% of the catchment occupied after 20 years, increasing to 80% after 30 years. Predictions were then for 95% occupancy after 69 years. The development of this IBM thus successfully simulated the range expansion dynamics of this small-bodied invasive fish, with ABC improving the simulation precision. This combined methodology also highlighted that sub-adult dispersal was more likely to contribute to the rapid colonisation rate than expert opinion suggested. These results emphasise the importance of time-series data for refining IBM parameters generally and increasing our understanding of dispersal behaviour and range expansion dynamics specifically.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3