Spatially limited pathogen pollution in an invasive tick and host system

Author:

De Jesus Carrie E.,Harman Madison E. A.,Sutton Amber,Bredin Stephen,Romagosa Christina M.,Wisely Samantha M.ORCID

Abstract

AbstractExpansion of global commerce has facilitated pathogen pollution via the transportation and translocation of invasive species and their associated parasites and pathogens. In Florida, imported cane toads (Rhinella horribilis) were accidentally and intentionally released on multiple occasions. Early populations were found to be infested with the invasive tick, Amblyomma rotundatum, yet it is unknown if these ticks dispersed with their hosts as cane toads spread throughout much of the state. The objectives of our investigation were to (1) determine if there are fewer tick infestations on toads at the periphery than at the core of their distribution as predicted by founder effect events, and (2) identify if ticks were infected with exotic pathogens. We captured toads from 10 populations across Florida. We collected ticks, vent tissue, and tick attachment site tissue from each toad, then tested samples for bacteria in the genus, Rickettsia. We found that 3/10 populations had toads that were infested with A. rotundatum, and infested individuals were in the earliest introduced populations at the core of their distribution. Pathogen testing confirmed Rickettisa bellii in ticks, but not in toad tissues. Haplotype networks could not clearly distinguish if R. bellii in Florida was more closely related to North or South American strains, but host-tick associations suggest that the pathogen was exotic to Florida. Our investigation demonstrated that an invasive species facilitated the introduction of parasites and pathogens into Florida, yet the invasive tick species encountered limitations to dispersal on this host species.

Funder

Centers for Disease Control and Prevention

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3