Physiological effects of interacting native and invasive bivalves under thermal stress

Author:

Hillebrand VeronikaORCID,Dobler Andreas H.ORCID,Schwalb Astrid N.ORCID,Geist JuergenORCID

Abstract

AbstractAcross many ecosystems in North America and Europe, native freshwater bivalves (Order Unionida) are threatened by fouling and competition for food by the invasive zebra mussel Dreissena polymorpha. In light of climate change, knowledge on the influence of water temperature on these competitive effects is important, yet poorly understood. This study examines the physiological impact of the interaction between D. polymorpha and the native European unionid Anodonta cygnea over a 28 day—period in response to water temperatures of 12, 19, and 25 °C by comparing their glycogen, glucose, lipid and protein concentrations. The laboratory experiment comprised three treatments: (1) fouling of A. cygnea by D. polymorpha, (2) both species present but not fouling; and (3) a control in which A. cygnea and D. polymorpha were placed separately. Increased water temperatures caused physiological stress in D. polymorpha as evident from reduced glycogen, glucose, lipid and protein concentrations. Dreissena polymorpha benefited from fouling of unionids, as individuals that fouled A. cygnea tended to have increased glycogen, glucose, lipid and protein concentrations. Competitive effects of D. polymorpha over the unionid bivalve species, however, were not intensified by elevated temperatures. Glochidia release, lower infestation intensity, and physiological stress of Dreissena at higher temperatures were likely confounding factors. The results of this study suggest that understanding the physiological consequences of species interactions at changing temperatures can be an important tool to assess future climate change impacts on freshwater bivalves and aquatic community structures.

Funder

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Texas State University

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3