Stiff-PDEs and Physics-Informed Neural Networks

Author:

Sharma PrakharORCID,Evans Llion,Tindall Michelle,Nithiarasu Perumal

Abstract

AbstractIn recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3