A State of the Art on Simulation and Modelling Methods in Machining: Future Prospects and Challenges

Author:

Korkmaz Mehmet Erdi,Gupta Munish KumarORCID

Abstract

AbstractSimulation modelling methods have gained dramatic acceleration in the last years among academic environments and industry-driven enterprises. Primary reason is that such models have great potential in predicting of machining process parameters. Therefore, tis study evaluates the place and capability of these models in fundamental machining operations. In this direction, Finite Element Modelling Methods are discussed by questioning their contributions to the process performance. Despite numerous positive aspects, development of a successful model is highly difficult owing to the complexity of machining environment with variation of thermo-mechanical effect, tribological conditions, interaction of process variables and high deformation rate of materials etc. Therefore, a critical assessment of the merits and drawbacks of each method associating with their basic phenomena has been investigated. Predictive models basically aim to estimate the machinability characteristics such as stress–stain rates, cutting forces and temperatures etc. Nevertheless, practical applications require correlations between these characteristics and performance outcomes such as surface integrity of part, tool wear index, chip morphology, dimensional accuracy etc. In the end, the molecular dynamics and smoothed particle hydrodynamics have been discussed. Thus, this paper is expected to contribute to up-to-date studies by criticizing the key findings of the predictive models in machining processes.

Funder

Polısh Natıonal Agency For Academıc Exchange

Narodowym Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3