Active Learning and Bayesian Optimization: A Unified Perspective to Learn with a Goal

Author:

Di Fiore FrancescoORCID,Nardelli Michela,Mainini LauraORCID

Abstract

AbstractScience and Engineering applications are typically associated with expensive optimization problem to identify optimal design solutions and states of the system of interest. Bayesian optimization and active learning compute surrogate models through efficient adaptive sampling schemes to assist and accelerate this search task toward a given optimization goal. Both those methodologies are driven by specific infill/learning criteria which quantify the utility with respect to the set goal of evaluating the objective function for unknown combinations of optimization variables. While the two fields have seen an exponential growth in popularity in the past decades, their dualism and synergy have received relatively little attention to date. This paper discusses and formalizes the synergy between Bayesian optimization and active learning as symbiotic adaptive sampling methodologies driven by common principles. In particular, we demonstrate this unified perspective through the formalization of the analogy between the Bayesian infill criteria and active learning criteria as driving principles of both the goal-driven procedures. To support our original perspective, we propose a general classification of adaptive sampling techniques to highlight similarities and differences between the vast families of adaptive sampling, active learning, and Bayesian optimization. Accordingly, the synergy is demonstrated mapping the Bayesian infill criteria with the active learning criteria, and is formalized for searches informed by both a single information source and multiple levels of fidelity. In addition, we provide guidelines to apply those learning criteria investigating the performance of different Bayesian schemes for a variety of benchmark problems to highlight benefits and limitations over mathematical properties that characterize real-world applications.

Publisher

Springer Science and Business Media LLC

Reference159 articles.

1. Abe N (1998) Query learning strategies using boosting and bagging. In: Proceedings of the 15 international CMF on machine learning (ICML98), pp 1–9

2. Atchadé YF, Rosenthal JS (2005) On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5):815–828

3. Atchade Y, Fort G, Moulines E et al (2011) Adaptive Markov chain Monte Carlo: Theory and methods. Bayesian time series models 1

4. Balakrishnan S, Nguyen QP, Low BKH et al (2020) Efficient exploration of reward functions in inverse reinforcement learning via Bayesian optimization. Adv Neural Inf Process Syst 33:4187–4198

5. Balcan MF, Broder A, Zhang T (2007) Margin based active learning. In: International conference on computational learning theory. Springer, Berlin, pp 35–50

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3