Surrogate-Based Design Optimisation Tool for Dual-Phase Fluid Driving Jet Pump Apparatus

Author:

Mifsud D.ORCID,Verdin P. G.

Abstract

AbstractA comparative study of four well established surrogate models used to predict the non-linear entrainment performance of a dual-phase fluid driving jet pump (JP) apparatus is performed. A JP design flow configuration comprising a dual-phase (air and water) flow driving a secondary gas-air flow, for which no one has ever provided a unique set of design solutions, is described. For the construction of the global approximations (GA), the response surface methodology (RSM), Kriging and the radial basis function artificial neural network (RBFANN), were primarily used. The stacked/ensemble models methodology was integrated in this study, to improve the predictive model results, thus providing accurate GA that facilitate the multi-variable non-linear response design optimisation. An error analysis of all four models along with a multiple model accuracy analysis of each case study were performed. The RSM, Kriging, RBFANN and stacked models formed part of the surrogate-based optimisation, having the entrainment ratio as the main objective function. Optimisation problems were solved by the interior-point algorithm and the genetic algorithm and incurred a hybrid formulation of both algorithms. A total of 60 optimisation problems were formulated and solved with all three approximation models. Results showed that the hybrid formulation having the level-2 ensemble Kriging model performed best, predicting the experimental performance results for all JP models within an error margin of less than 10 % in 90 % of the cases.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3