Bayesian Inversion with Open-Source Codes for Various One-Dimensional Model Problems in Computational Mechanics

Author:

Noii Nima,Khodadadian Amirreza,Ulloa Jacinto,Aldakheel FadiORCID,Wick Thomas,François Stijn,Wriggers Peter

Abstract

AbstractThe complexity of many problems in computational mechanics calls for reliable programming codes and accurate simulation systems. Typically, simulation responses strongly depend on material and model parameters, where one distinguishes between backward and forward models. Providing reliable information for the material/model parameters, enables us to calibrate the forward model (e.g., a system of PDEs). Markov chain Monte Carlo methods are efficient computational techniques to estimate the posterior density of the parameters. In the present study, we employ Bayesian inversion for several mechanical problems and study its applicability to enhance the model accuracy. Seven different boundary value problems in coupled multi-field (and multi-physics) systems are presented. To provide a comprehensive study, both rate-dependent and rate-independent equations are considered. Moreover, open source codes (https://doi.org/10.5281/zenodo.6451942) are provided, constituting a convenient platform for future developments for, e.g., multi-field coupled problems. The developed package is written in MATLAB and provides useful information about mechanical model problems and the backward Bayesian inversion setting.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Reference78 articles.

1. Rappel H, Beex LA, Hale JS, Noels L, Bordas S (2020) A tutorial on Bayesian inference to identify material parameters in solid mechanics. Arch Comput Methods Eng 27(2):361–385

2. Smith RC (2013) Uncertainty quantification: theory, implementation, and applications, vol 12. SIAM

3. Haario H, Saksman E, Tamminen J (1999) Adaptive proposal distribution for random walk Metropolis algorithm. Comput Stat 14(3):375–395

4. Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16(4):339–354

5. Pacheo C, Dulikravich G, Vesenjak M, Borovinšek M, Duarte I, Jha R, Reddy S, Orlande H, Colaço M (2016) Inverse parameter identification in solid mechanics using Bayesian statistics, response surfaces and minimization. Technische Mechanik 36(1–2):120–131

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3