Abstract
AbstractMesh-based and particle methods were conceived as two different discretization strategies to solve partial differential equations. In the last two decades computational methods have diversified and a myriad of hybrid formulations that combine elements of these two approaches have been developed to solve Computational fluid dynamics problems. In this work we present a review about the meshless-FV family of methods, an analysis is carried out showing that the MLS-SPH-ALE method can be considered as a general formulation from which a set of particle-based methods can be recovered. Moreover, we show the relations between the MLS-SPH-ALE method and the finite volume method. The MLS-SPH-ALE method is a versatile particle-based method that was developed to circumvent the consistency issues of particle methods caused by the use of the kernel approximation. The MLS-SPH-ALE method is developed from the differential equation in ALE form using the partition unity property which is automatically fulfilled by the Moving Least Squares approximation.
Funder
Ministerio de Ciencia e Innovación
Xunta de Galicia
Ministerio de Universidades
Universidade da Coruña
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献