Abstract
AbstractRapid progress in knowledge of the organization of the dog genome has facilitated the identification of the mutations responsible for numerous monogenic diseases, which usually present a breed-specific distribution. The majority of these diseases have clinical and molecular counterparts in humans. The affected dogs have thus become valuable models for preclinical studies of gene therapy for problems such as eye diseases, immunodeficiency, lysosomal storage diseases, hemophilia, and muscular dystrophy. Successful gene therapies in dogs have significantly contributed to decisions to run clinical trials for several human diseases, such as Leber’s congenital amaurosis 2—LCA2 (caused by a mutation of RPE65), X-linked retinitis pigmentosa—XLRP (caused by mutation RPGR), and achromatopsia (caused by mutation of CNGB3). Promising results were also obtained for canine as follows: hemophilia (A and B), mucopolysaccharidoses (MPS I, MPS IIIB, MPS VII), leukocyte adhesion deficiency (CLAD), and muscular dystrophy (a counterpart of human Duchenne dystrophy). Present knowledge on molecular background of canine monogenic diseases and their successful gene therapies prove that dogs have an important contribution to preclinical studies.
Funder
Uniwersytet Przyrodniczy w Poznaniu
Publisher
Springer Science and Business Media LLC
Subject
Genetics,General Medicine
Reference72 articles.
1. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM, Jacobson SG, Hauswirth WW, Bennett J (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92–95. https://doi.org/10.1038/ng0501-92
2. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, Dejneka NS, Pearce-Kelling SE, Maguire AM, Palczewski K, Hauswirth WW, Jacobson SG (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12(6):1072–1082. https://doi.org/10.1016/j.ymthe.2005.08.008
3. Aguirre GD, Baldwin V, Pearce-Kelling S, Narfström K, Ray K, Acland GM (1998) Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis 4:23
4. Almarza Novoa E, Kasbekar S, Thrasher AJ, Kohn DB, Sevilla J, Nguyen T, Schwartz JD, Bueren JA (2018) Leukocyte adhesion deficiency-I: a comprehensive review of all published cases. J Allergy Clin Immunol Pract 6(4):1418–1420.e10. https://doi.org/10.1016/j.jaip.2017.12.008
5. Amoasii L, Hildyard JCW, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou TR, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86–91. https://doi.org/10.1126/science.aau1549
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献