Superior detection of low-allele burden Janus kinase 2 V617F mutation and monitoring clonal evolution in myeloproliferative neoplasms using chip-based digital PCR

Author:

Lu YiyiORCID,Lin Lin,Lin Jiafei,Wu Beiying,Cai Gang,Wang Xuefeng,Ma XuefeiORCID

Abstract

AbstractThe JAK2 V617F is a prevalent driver mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (PhMPNs), significantly affecting disease progression, immunophenotype, and patient outcomes. The World Health Organization (WHO) guidelines highlight the JAK2 V617F mutation as one of the key diagnostic criterions for PhMPNs. In this study, we analyzed 283 MPN samples with the JAK2 V617F mutation to assess the effectiveness of three detection technologies: chip-based digital PCR (cdPCR), real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). Additionally, we investigated the relationship between JAK2 V617F mutant allele burden (% JAK2 V617F) and various laboratory characteristics to elucidate potential implications in MPN diagnosis. Our findings demonstrated high conformance of cdPCR with qPCR/NGS for detecting % JAK2 V617F, but the mutant allele burdens detected by qPCR/NGS were lower than those detected by cdPCR. Moreover, the cdPCR exhibited high sensitivity with a limit of detection (LoD) of 0.08% and a limit of quantification (LoQ) of 0.2% for detecting % JAK2 V617F in MPNs. Clinical implications were explored by correlating % JAK2 V617F with various laboratory characteristics in MPN patients, revealing significant associations with white blood cell counts, lactate dehydrogenase levels, and particularly β2-microglobulin (β2-MG) levels. Finally, a case report illustrated the application of cdPCR in detecting low-allele burdens in a de novo chronic myeloid leukemia (CML) patient with a hidden JAK2 V617F subclone, which expanded during tyrosine kinase inhibitor (TKI) treatment. Our findings underscore the superior sensitivity and accuracy of cdPCR, making it a valuable tool for early diagnosis and monitoring clonal evolution.

Funder

Ruijin Hospital affiliated Shanghai Jiao Tong University School of Medicine "Guangci Clinical New Technology Launch Project

Publisher

Springer Science and Business Media LLC

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3