Author:
Verstovsek Srdan,Yu Jingbo,Kish Jonathan K.,Paranagama Dilan,Kaufman Jill,Myerscough Callan,Grunwald Michael R.,Colucci Philomena,Mesa Ruben
Abstract
AbstractMyelofibrosis (MF) is a chronic myeloproliferative neoplasm with a prevalence of 4 to 6 per 100,000 people in the USA. Treatment recommendations are risk-adapted. This study was conducted to evaluate how physicians risk-stratify patients at the time of MF diagnosis, the accuracy of the risk stratification, and its effect on treatment selection. Medical charts were reviewed at US community hematology/oncology practices in the Cardinal Health Oncology Provider Extended Network; patient clinical characteristics, risk stratification, and treatment data were collected. Physician-assigned risk categorizations were compared with data-derived risk categorizations based on the International Prognostic Scoring System, the system recommended at diagnosis. A total of 491 patients diagnosed with MF between 2012 and 2016 (mean [SD] age at diagnosis, 65.4 [11.8] years; 54.8% male, 69.2% with primary MF) were included. Risk categorization was not assigned for 30.1% of patients. Of the patients with a physician-assigned risk categorization (n = 343), a scoring system was used in 49.9%. Compared with data-derived risk categorizations, 42.9% of physician-assigned risk categorizations were incorrect; 85.0% of incorrect physician-assigned risk categorizations were underestimations. Notably, 38.5% of patients with data-derived intermediate- or high-risk categorizations did not initiate treatment within 120 days of diagnosis. Among patients with data-derived intermediate risk, those with an underestimated physician-assigned risk categorization were significantly less likely to receive treatment within 120 days of diagnosis (51.6% with correct physician-assigned categorization vs 18.5% with underestimated risk categorization; P = 0.0023). These results highlight the gap in risk assessment and the importance of accurate risk stratification at diagnosis.
Publisher
Springer Science and Business Media LLC
Subject
Hematology,General Medicine
Reference16 articles.
1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544
2. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Myeloproliferative Neoplasms V.3.2019. © National Comprehensive Cancer Network, Inc. 2019. All rights reserved. Accessed September 4, 2019. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way
3. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, Vannucchi AM, Mesa RA, Demory JL, Barosi G, Rumi E, Tefferi A (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901. https://doi.org/10.1182/blood-2008-07-170449
4. Mesa RA, Schwager S, Radia D, Cheville A, Hussein K, Niblack J, Pardanani AD, Steensma DP, Litzow MR, Rivera CE, Camoriano J, Verstovsek S, Sloan J, Harrison C, Kantarjian H, Tefferi A (2009) The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 33(9):1199–1203. https://doi.org/10.1016/j.leukres.2009.01.035
5. Mehta J, Wang H, Iqbal SU, Mesa R (2014) Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma 55(3):595–600. https://doi.org/10.3109/10428194.2013.813500
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献