Exploiting cepstral coefficients and CNN for efficient musical instrument classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12530-023-09540-x.pdf
Reference33 articles.
1. Aucouturier JJ, Pachet F (2003) Representing musical genre: a state of the art. J New Music Res 32(1):83–93
2. Bhalke D, Rao CR, Bormane DS (2016) Automatic musical instrument classification using fractional Fourier transform based-MFCC features and counter propagation neural network. J Intell Inf Syst 46(3):425–446
3. Bormane D, Dusane M (2013) A novel techniques for classification of musical instruments. Inf Knowl Manag 3:1–8
4. Chakraborty SS, Parekh R (2018) Improved musical instrument classification using cepstral coefficients and neural networks. Methodologies and application issues of contemporary computing framework. Springer, Cham, pp 123–138
5. Deng JD, Simmermacher C, Cranefield S (2008) A study on feature analysis for musical instrument classification. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(2):429–438
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3