Feature dimensionality reduction via homological properties of observability

Author:

Trovati MarcelloORCID,Farsimadan Eslam

Abstract

AbstractFeature selection and its subsequent dimensionality reduction are significant problems in machine learning and it is at the core of several data science techniques. The ‘shape’ of data, or in other words its related topological properties, can provide crucial insights into the corresponding data types and sources and it enables the identification of general properties that facilitate its analysis and assessment. In this article, we discuss an information theoretic approach combined with data homological properties to assess dimensionality reduction, which can be applied to semantic feature selection.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Modeling and Simulation,Control and Systems Engineering

Reference15 articles.

1. Alexander S, Bishop R (1990) The hadamard-cartan theorem in locally convex metric spaces. Enseign Math 36:309–320. https://doi.org/10.5169/seals-57911

2. Carlsson G (2008) Topology and data. Technical report

3. Chazal F, Michel B (2017) An introduction to topological data analysis: fundamental and practical aspects for data scientists. arXiv:1710.04019

4. Edelsbrunner H, Harer J (2008) Persistent Homology – a Survey. In: Surveys on Discrete and Computational Geometry, vol. 453, p. 257. Amer Mathematical Society

5. Hatcher A (2002) Algebraic Topology. Cambridge University Press, Cambridge

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3