Author:
Nešetřil Jaroslav,Rödl Vojtěch
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Abramson, F.G., Harrington, L.A.: Models without indiscernibles. J. Symb. Logic 43, 572–600 (1978)
2. Angel, O., Kechris, A.S., Lyons, R.: Random orderings and unique ergodicity of automorphism group. J. Eur. Math. Soc. (JEMS) 16(10), 2059–2095 (2014)
3. Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar 17, 61–99 (1966)
4. Nešetřil, J.: Ramsey theory. In: Graham, R.L., Grötchel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1331–1403. Elsevier, Amsterdam (1996)
5. Nešetřil, J.: A combinatorial classic: sparse graphs with high chromatic number. In: Lovász, L., Ruzsa, I., Sós, V.T. (eds.) Erdős Centennial, pp. 383–408. Springer, New York (2013)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tiling Edge-Ordered Graphs with Monotone Paths and Other Structures;SIAM Journal on Discrete Mathematics;2024-06-07
2. Turán problems for edge-ordered graphs;Journal of Combinatorial Theory, Series B;2023-05
3. Tiling problems in edge-ordered graphs;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023
4. Erdős–Szekeres theorem for multidimensional arrays;Journal of the European Mathematical Society;2022-08-31
5. On quantitative aspects of a canonisation theorem for edge‐orderings;Journal of the London Mathematical Society;2022-06-19