A counting invariant for maps into spheres and for zero loci of sections of vector bundles

Author:

Konstantis Panagiotis

Abstract

AbstractThe set of unrestricted homotopy classes $$[M,S^n]$$ [ M , S n ] where M is a closed and connected spin $$(n+1)$$ ( n + 1 ) -manifold is called the n-th cohomotopy group $$\pi ^n(M)$$ π n ( M ) of M. Using homotopy theory it is known that $$\pi ^n(M) = H^n(M;{\mathbb {Z}}) \oplus {\mathbb {Z}}_2$$ π n ( M ) = H n ( M ; Z ) Z 2 . We will provide a geometrical description of the $${\mathbb {Z}}_2$$ Z 2 part in $$\pi ^n(M)$$ π n ( M ) analogous to Pontryagin’s computation of the stable homotopy group $$\pi _{n+1}(S^n)$$ π n + 1 ( S n ) . This $${\mathbb {Z}}_2$$ Z 2 number can be computed by counting embedded circles in M with a certain framing of their normal bundle. This is a similar result to the mod 2 degree theorem for maps $$M \rightarrow S^{n+1}$$ M S n + 1 . Finally we will observe that the zero locus of a section in an oriented rank n vector bundle $$E \rightarrow M$$ E M defines an element in $$\pi ^n(M)$$ π n ( M ) and it turns out that the $${\mathbb {Z}}_2$$ Z 2 part is an invariant of the isomorphism class of E. At the end we show that if the Euler class of E vanishes this $${\mathbb {Z}}_2$$ Z 2 invariant is the final obstruction to the existence of a nowhere vanishing section.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On modular cohomotopy groups;Israel Journal of Mathematics;2022-11-28

2. The homotopy classification of proper Fredholm maps of index one;Topological Methods in Nonlinear Analysis;2022-01-30

3. Correction to: A counting invariant for maps into spheres and for zero loci of sections of vector bundles;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3