Feature selection using differential evolution for microarray data classification

Author:

Prajapati SanjayORCID,Das HimansuORCID,Gourisaria Mahendra KumarORCID

Abstract

AbstractThe dimensions of microarray datasets are very large, containing noise and redundancy. The problem with microarray datasets is the presence of more features compared to the number of samples, which adversely affects algorithm performance. In other words, the number of columns exceeds the number of rows. Therefore, to extract precise information from microarray datasets, a robust technique is required. Microarray datasets play a critical role in detecting various diseases, including cancer and tumors. This is where feature selection techniques come into play. In recent times, feature selection (FS) has gained significant importance as a data preparation method, particularly for high-dimensional data. It is preferable to address classification problems with fewer features while maintaining high accuracy, as not all features are necessary to achieve this goal. The primary objective of feature selection is to identify the optimal subset of features. In this context, we will employ the Differential Evolution (DE) algorithm. DE is a population-based stochastic search approach that has found widespread use in various scientific and technical domains to solve optimization problems in continuous spaces. In our approach, we will combine DE with three different classification algorithms: Random Forest (RF), Decision Tree (DT), and Logistic Regression (LR). Our analysis will include a comparison of the accuracy achieved by each algorithmic model on each dataset, as well as the fitness error for each model. The results indicate that when feature selection was used the results were better compared to the results where the feature selection was not used.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Energy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3