The property of Kelley by arcs

Author:

Chacón-Tirado MauricioORCID,de J. López María,Suárez-López José Luis

Abstract

AbstractFor a metric continuum X and a point $$p\in X$$ p X , the hyperspace of arcs in X containing p, Arcs(pX), is defined as the set containing $$\{p\}$$ { p } and all arcs in X that contain the point p, we endow this hyperspace with the Hausdorff metric. In this paper we introduce the property of Kelley by arcs; a continuum X has the property of Kelley by arcs provided that for each $$p\in X$$ p X , for each $$A\in Arcs(p, X)$$ A A r c s ( p , X ) , and for each sequence of points $$\{p_{n}\}_{n\in \mathbb {N}}$$ { p n } n N that converges to p, there exists a sequence $$\{A_{n}\}_{n\in \mathbb {N}}$$ { A n } n N that converges to A such that $$A_{n}\in Arcs(p_{n}, X)$$ A n A r c s ( p n , X ) , for each $$n\in \mathbb {N}$$ n N . We show that in the class of finite graphs the property of Kelley by arcs characterizes the fact of being either an arc or a simple closed curve. We prove that in arc-continua the property of Kelley by arcs is equivalent to the property of Kelley. Also, we prove that homogeneous continua have the property of Kelley by arcs. Moreover, we prove that in the class of dendroids the property of Kelley by arcs implies the property of Kelley, and we show that the arc is the only dendroid with the property of Kelley by arcs. Finally, we study the property of Kelley by arcs in the class of compactifications of the ray $$[0, \infty )$$ [ 0 , ) with remainder a finite graph or a dendroid.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Anderson, R.D.: A characterization of the universal curve and a proof of is homogeneity. Ann. Math. 2(67), 313–324 (1958)

2. Anderson, R.D.: One-dimensional continuous curves and a homogeneity theorem. Ann. Math. 2(68), 1–16 (1958)

3. Beane, R.A., Charatonik, W.J.: Kelley Remainders of $$[0, \infty )$$. Topology Proc. 32, 101–114 (2008)

4. Chacón-Tirado, M., López, M. de J., Suárez-López, J. L.: Hyperspaces of arcs containing a point. Topology Proc. 63: 149–166 (2024)

5. Charatonik, W.J.: Inverse limits of smooth continua. Comment. Math. Univ. Carolin. 23(1), 183–191 (1982)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3