Abstract
AbstractWe find the sharp bound for the third Hankel determinant $$\begin{aligned} H_{3,1}(f):= \left| {\begin{array}{*{20}c} {a_{1} } & {a_{2} } & {a_{3} } \\ {a_{2} } & {a_{3} } & {a_{4} } \\ {a_{3} } & {a_{4} } & {a_{5} } \\ \end{array} } \right| \end{aligned}$$
H
3
,
1
(
f
)
:
=
a
1
a
2
a
3
a
2
a
3
a
4
a
3
a
4
a
5
for analytic functions f with $$a_n:=f^{(n)}(0)/n!,\ n\in \mathbb N,\ a_1:=1,$$
a
n
:
=
f
(
n
)
(
0
)
/
n
!
,
n
∈
N
,
a
1
:
=
1
,
such that $$\begin{aligned} {{\,\mathrm{Re}\,}}f'(z)>0,\quad z\in \mathbb D:=\{z \in \mathbb C: |z|<1\}. \end{aligned}$$
Re
f
′
(
z
)
>
0
,
z
∈
D
:
=
{
z
∈
C
:
|
z
|
<
1
}
.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17(1), 12–22 (1915)
2. Babalola, K.O.: On $$H_3(1)$$ Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 6, 1–7 (2010)
3. Carathéodory, C.: Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64, 95–115 (1907)
4. Carlitz, L.: Hankel determinants and Bernoulli numbers. Tohoku Math. J. 5, 272–276 (1954)
5. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 41, 523–535 (2018)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献