Recent Developments in Self-Assembling Multi-Robot Systems

Author:

Bray Edward,Groß RoderichORCID

Abstract

Abstract Purpose of Review This review studies recent developments towards the physical design and control of self-assembling multi-robot systems. Recent Findings A wide range of novel robotic systems have been developed lately, for potential applications in terrestrial, aquatic, and aerospace environments. They increasingly make use of connectors which enable modules to join with each other at arbitrary points instead of discrete locations. Although the majority of contemporary algorithms are shape-driven, an increased focus on task-driven algorithms is observed. Summary Self-assembling multi-robot systems allow the same set of robots to adopt specific morphologies for different tasks. The requirements for robots to be able to connect to each other, locomote, and communicate have led to a wide range of physical designs realising different trade-offs. While algorithms are validated extensively in simulation, only a small portion are yet tested on real robotic platforms. Future research should investigate the real-world application of these systems, possibly aided by the introduction of standardised and open hardware.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Space Optimization Competition: Third Edition;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3