Comparison between object and image plane cross-correlation for stereoscopic PIV in the presence of pixel locking

Author:

Jankee Girish K.,Ganapathisubramani Bharathram

Abstract

Abstract Pixel locking in stereoscopic particle image velocimetry (SPIV) is often overlooked, albeit the existence of studies demonstrating an influence on turbulent statistics. Such a bias error occurs when the seeding particles have an image diameter in the range of 1–2 pixels. Together with the advent of superior cameras and more powerful lasers, new image-processing techniques enable large field of views to be examined. Under such circumstances, defocusing is not an option and due to the small nature of the particle image diameter, pixel locking is inherent in the data. This study analyses the contrast between object plane-based and image plane-based approach for cross-correlation in the presence of pixel locking in SPIV. By combining experimental data and synthetic images, the sensitivity of pixel locking on single-point statistics is quantified and a protocol is proposed to tackle such an increasingly prevalent condition. A consequence of pixel locking is the occurrence of Moiré fringes, whose intensity is observed to be enhanced in the presence of particles with an image diameter less than 2 pixels. Such high frequency artifacts are not only receptive to the fill factor of the sensor but also depend on the residual error of the interpolation from image plane to the object plane. This study discusses the origins of Moiré fringes in SPIV and provides a method to mitigate these based on the type of cross-correlation used. Graphic abstract Variation of the difference in RMS between the true value and the derived value from diverse adopted methodologies as the particle image diameter, $$d_{\tau }$$dτ increases. (OP: Object plane cross-correlation, IP: Image plane cross-correlation, IP HE: Image plane cross-correlation post histogram equalisation)

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3