Drag reduction mechanisms on a generic square-back vehicle using an optimised yaw-insensitive base cavity

Author:

Urquhart MagnusORCID,Varney Max,Sebben Simone,Passmore Martin

Abstract

AbstractRegulations on global greenhouse gas emission are driving the development of more energy-efficient passenger vehicles. One of the key factors influencing energy consumption is the aerodynamic drag where a large portion of the drag is associated with the base wake. Environmental conditions such as wind can increase the drag associated with the separated base flow. This paper investigates an optimised yaw-insensitive base cavity on a square-back vehicle in steady crosswind. The test object is a simplified model scale bluff body, the Windsor geometry, with wheels. The model is tested experimentally with a straight cavity and a tapered cavity. The taper angles have been optimised numerically to improve the robustness to side wind in relation to drag. Base pressures and tomographic Particle Image Velocimetry of the full wake were measured in the wind tunnel. The results indicate that a cavity decreases the crossflow within the wake, increasing base pressure, therefore lowering drag. The additional optimised cavity tapering further reduces crossflow and results in a smaller wake with less losses. The overall wake unsteadiness is reduced by the cavity by minimising mixing in the shear layers as well as dampening wake motion. However, the coherent wake motions, indicative of a balanced wake, are increased by the investigated cavities. Graphical abstract

Funder

Energimyndigheten

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3