Experimental investigation of heating augmentation by particle kinetic energy conversion in dust-laden supersonic flows

Author:

Allofs DirkORCID,Neeb DominikORCID,Gülhan AliORCID

Abstract

AbstractThe presence of particles in supersonic flows can cause significant increases in stagnation point heat fluxes (Dunbar et al. in AIAA J 13:908–912, 1975). This effect is commonly named ‘particle-induced heat flux augmentation’ or just ‘heating augmentation.’ Heating augmentation can be described as the sum of the conversion of kinetic energy of the particles into thermal energy, characterized by the energy conversion efficiency, also called accommodation coefficient, and the increase of convective heat flux (Polezhaev et al. in High Temp 30:1147–1153, 1992; Vasilevskii and Osiptsov in Experimental and numerical study of heat transfer on a blunt body in dusty hypersonic flow 33rd thermophysics conference, American Institute of Aeronautics and Astronautics, 1999). Although the accommodation coefficient is fundamental for heating augmentation characterization, there is only a small number of experimental datasets for it. This work focusses on the experimental determination of the accommodation coefficient in flow regimes at Mach number 2.1, Reynolds number, based on the probe nose diameter, from approx. 6e5 to 1.8e6, and nominal particle sizes of approx. 20 µm. The decrease of particle velocity and kinetic energy flux in the shock layer is measured with highly resolved shadowgraphy for individual particles. The particle kinetic energy flux is decreased by 29% on average by particle deceleration in the shock layer. Negligible kinetic energy fluxes of rebounded particles were measured. The accommodation coefficient is approx. 0.36 for Al2O3 and SiO2 particles, while it is approx. 0.09 for MgO particles. Hence, it is significantly smaller than the widely used value of 0.7, based on the study of (Fleener and Watson in Convective heating in dust-laden hypersonic flows 8th thermophysics conference, 1973), but in good agreement with values given in (Hove and Shih in Reentry vehicle stagnation region heat transfer in particle environments 15th aerospace sciences meeting, 1977) and (Molleson and Stasenko in High Temp 55:87–94, 2017. https://doi.org/10.1134/S0018151X1701014X ). No difference between erosive and elastic particle reflection mode was detected on the conversion efficiency. The data from a simplification of the modeling approach of the conversion efficiency for elastic particle reflection by Molleson and Stasenko (2017) are in poor agreement with experimental data.

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3