Wall-shear-stress measurements using volumetric µPTV

Author:

Fuchs Thomas,Bross Matthew,Kähler Christian J.

Abstract

AbstractAccurately determining the wall-shear-stress, $$\tau _\textrm{w}$$ τ w , experimentally is challenging due to small spatial scales and large velocity gradients present in the near-wall region of turbulent flows. To avoid these resolution requirements, several indirect iterative fitting methods, most notably the Clauser chart method, exist for determining $$\overline{\tau }_{w}$$ τ ¯ w by fitting the mean velocity profile further away from the near-wall region in the log-law layer. These methods often require proper selection of fitting constants, assumptions of a canonical flow state, and other empirical-based generalizations. To reduce the amount of ambiguity, determining the near-wall velocity gradient by assuming a linear relationship between the mean streamwise velocity and wall normal distance in the viscous sublayer can be used. However, this requires an accurate unbiased measurement of the near-wall velocity profile in the region below five viscous spatial units, which can be less than 50 µm for high Reynolds number flows. Therefore, in this study a method for a volumetric defocusing microparticle tracking velocimetry method is presented that is capable of resolving the flow in the viscous sublayer of a turbulent boundary layer up to $$U_{\textrm{e}}=44.7\,$$ U e = 44.7 m/s ($$Re_{\theta }=27250$$ R e θ = 27250 ). This method allows for the measurement of the near-wall flow through a single optical access for illumination and imaging and serves as an excellent complement of larger scale measurements that require near-wall information. The $$\overline{\tau }_\textrm{w}$$ τ ¯ w values determined from the defocusing approach were found to be in good agreement values obtained from a simultaneous parallax PTV measurement. Furthermore, analysis of the diagnostic plot and cumulative distribution of measured fluctuations in the near-wall region, showed that both methods are capable of accurately determining mean velocity and fluctuation profiles in the self-similar viscous sublayer region.

Funder

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3