Abstract
Abstract
Due to current and future environmental and safety issues in space propulsion, typical propellants for upper stage or satellite rocket engines such as the toxic hydrazine are going to be replaced by green propellants like the combination of liquid oxygen and hydrogen or methane. The injection of that kind of cryogenic fluids into the vacuum atmosphere of space leads to a superheated state, which results in a sudden and eruptive atomization due to flash boiling. For a detailed experimental investigation of superheated cryogenic fluids, the new cryogenic test bench M3.3 with a temperature controlled injection system was built at DLR Lampoldshausen. After a first test campaign with high-speed shadowgraphy of flash boiling liquid nitrogen sprays, a laser-based Phase Doppler system was set-up to determine the spatial distributions of droplet velocities and diameters in highly superheated sprays. The spatial distributions revealed a core region with high mean velocities close to the injector orifice. With increasing distance from the injector orifice, the sprays develop a more and more monodisperse pattern. These distributions also showed that atomization due to flash boiling generates finer sprays with growing degrees of superheat. In certain spray regions, two droplet populations varying in their direction of motion, velocity and diameter due to possible recirculation zones were observed. The experimental data of flash boiling liquid nitrogen generated within this study provide a comprehensive data base for the validation of numerical models and further numerical investigations.
Graphic abstract
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics
Reference37 articles.
1. Abramovich GN (1963) The theory of turbulent jets, 1st edn. The MIT Press, Cambridge
2. Aleiferis PG, Serras-Pereira J, Augoye A, Davies TJ, Cracknell RF, Richardson D (2010) Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines. Int J Heat Mass Transf 53(21–22):4588–4606
3. Araneo L, Dondè R (2017) Flash boiling in a multihole G-DI injector—effects of the fuel distillation curve. Fuel 191:500–510
4. Araneo L, Dondè R (2019) Atomization of a G-DI spray with air dissolved in gasoline and mono-component fuels. In: 29th ILASS-Europe conference, Paris, France
5. Ashgriz N, Poo JY (1990) Coalescence and separation in binary collisions of liquid drops. J Fluid Mech 221:183–204
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献