Dense velocity reconstruction with VIC-based time-segment assimilation

Author:

Scarano FulvioORCID,Schneiders Jan F. G.,Saiz Gabriel Gonzalez,Sciacchitano Andrea

Abstract

AbstractThe vortex-in-cell time-segment assimilation (VIC-TSA) method is introduced. A particle track is obtained from a finite number of successive time samples of the tracer’s position and velocity can be used for reconstruction on a Cartesian grid. Similar to the VIC + technique, the method makes use of the vortex-in-cell paradigm to produce estimates of the flow state at locations and times other than the measured ones. The working principle requires time-resolved measurements of the particles’ velocity during a finite time interval. The work investigates the effects of the assimilated length on the spatial resolution of the velocity field reconstruction. The working hypotheses of the VIC-TSA method are presented here along with the numerical algorithm for its application to particle tracks datasets. The novel parameter governing the reconstruction is the length of the time-segment chosen for the data assimilation. Three regimes of operation are identified, based on the track length and the geometrical distance between neighbouring tracks. The regime of adjacent tracks arguably provides the optimal trade-off between spatial resolution and computational effort. The VIC-TSA spatial resolution is evaluated first by a numerical exercise; a 3D sine wave lattice is reconstructed at different values of the particles concentration. The modulation appears to reduce (cut-off delay) when the time-segment length is increased. Large-scale PIV experiments in the wake of a circular cylinder at Red = 27,000 are used to evaluate the method’s suitability to real data, including noise and data outliers. Both primary vortex structures in the Kármán wake as well as interconnecting ribs are present in this complex flow field, with a typical diameter close to the average inter-particle distance. When the time-segment is increased to adjacent tracks and beyond, a more regular time dependence of local and Lagrangian properties is observed, confirming the suitability of the time-segment assimilation for accurate reconstruction of sparse velocity data. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3