Hydrodynamics and shape reconstruction of single rising air bubbles in water using high-speed tomographic particle tracking velocimetry and 3D geometric reconstruction

Author:

Chang Yingjie,Müller Conrad,Kováts Péter,Guo Liejin,Zähringer Katharina

Abstract

AbstractTime-resolved tomographic particle tracking velocimetry (TR-3D-PTV), also called 4D-PTV, is used here to obtain the instantaneous 3D liquid flow field information in the wake of a single rising bubble in water. Simultaneously, the bubble shape, size and velocity are determined by tomographic reconstruction of the 3D bubble shape. Both, tracer particles for PTV and bubbles, are imaged in a shadow mode with background illumination. The Lagrangian method used in this paper, especially combined with the shake the box algorithm, has big advantages compared to particle image velocimetry, in situations, where only low particle per pixel values can be obtained. In this research, single air bubbles of different sizes, with diameters of around 2.4 mm, 4.0 mm, 6.0 mm and 9.6 mm, were injected into stagnant de-ionized water. Their shape was reconstructed in 3D, and an equivalent bubble diameter was determined from this reconstruction. Compared to conventionally used 2D shadow imaging, this diameter is about 13% smaller. The 3D bubble trajectory can be analysed and decomposed into a sinusoidal function curve lateral projection and an ellipsoidal shape vertical projection. As the bubble diameter increases, the radius of the spiral trajectory is decreasing as well as the amplitude of vertical sinusoidal oscillation. The wake structure in the liquid behind the bubbles is also changing with bubble size: from simple vortex pairs for smaller bubbles to an intertwined structure of several twisted vortices for the bigger ones. Graphical abstract Three-dimensional bubble reconstruction (grey surface) and liquid stream lines coloured with velocity magnitude around an ascending air bubble in de-ionized water.

Funder

China Scholarship Council

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Otto-von-Guericke-Universität Magdeburg

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3