Aerodynamic optimization of a generic light truck under unsteady conditions using gradient-enriched machine learning control

Author:

Semaan Richard,Oswald Philipp,Cornejo Maceda Guy Y.,Noack Bernd R.

Abstract

AbstractWe present the first machine-learned multiple-input multiple-output aerodynamic feedback control under varying operating conditions. Closed-loop control is relevant to many fluid dynamic applications ranging from gust mitigation to drag reduction. Existing machine learning control investigations have been mainly applied under steady conditions. The current study leverages gradient-enriched machine learning control (Cornejo Maceda et al. in J Fluid Mech 917:A42, 2021) to identify optimal control laws under unsteady conditions. The approach is exemplified on a coupled oscillator system with unsteady coupling and demonstrated for a generic truck model undergoing a yawing maneuver. Key enablers of the experiment are a rich set of pneumatic actuators and pressure sensors. The results demonstrate the method’s capabilities in identifying an efficient forcing for control under dynamically changing conditions. This automated and generalizable closed-loop control strategy complements and expands the machine learning control field and promises a new fast-track avenue to efficiently control a broader set of fluid flow problems.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of aerodynamic drag reduction for truck trailer model via machine learning;Measurement;2025-01

2. Aerodynamic performances and near wake of an Ahmed body under unsteady flow conditions;Experimental Thermal and Fluid Science;2025-01

3. Fast Self-Learning of Turbulence Feedback Laws Using Gradient-Enriched Machine Learning Control;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

4. Turbulence Control: From Model-Based to Machine Learned;Advances in Mathematical Fluid Mechanics;2023-11-20

5. Evolutionary Machine Learning in Control;Handbook of Evolutionary Machine Learning;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3