Experimental study of confined coaxial jets in a non-axisymmetric co-flow

Author:

Larsson I. A. SofiaORCID,Lycksam Henrik,Lundström T. Staffan,Marjavaara B. Daniel

Abstract

Abstract Confined, turbulent, coaxial jets in a non-axisymmetric co-flow are studied using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) simultaneously. Eight different cases are measured. Two momentum flow ratios of the co-flow are used in the experiment to investigate the effect on the coaxial burner jet behavior and mixing characteristics of the coaxial jet flow and the co-flowing, secondary fluid. In addition, four different momentum flow ratios of the coaxial outer to inner jet are investigated. The objective of the study is to get a deeper understanding of how the flow dynamics affects the entrainment and mixing process in a coaxial jet with a non-axisymmetric, surrounding co-flow. The results show that the introduction of a coaxial stream affects the inner jet and decreases the mixing with the surrounding co-flow; the effect is enhanced as the momentum flow ratio of the coaxial jet increases. The distribution of the secondary, co-flowing fluid controls the shape and direction of the coaxial jet, but does not have a significant impact on the mixing process near the centerline. Practical implications of this investigation are related to the possibility to better control a diffusion flame by introducing a coaxial stream. In this context it is concluded that it is possible to affect the jet development and hence the flame length. The conclusion is based on the assumption that the outer, coaxial stream has a low mass flow, not enough to provide complete combustion, and hence the co-flowing, secondary fluid provides the air needed for the combustion process. Graphic abstract

Funder

VINNOVA

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3