Reconstruction of surface-pressure fluctuations using deflectometry and the virtual fields method

Author:

Kaufmann R.ORCID,Ganapathisubramani B.,Pierron F.

Abstract

Abstract This study presents an approach for obtaining full-field dynamic surface-pressure reconstructions with low differential amplitudes. The method is demonstrated in a setup where an air jet is impinging on a flat plate. Deformations of the flat plate under dynamic loading of the impinging jet were obtained using a deflectometry setup that allows measurement of surface slopes with high accuracy and sensitivity. The measured slope information was then used as input for the virtual fields method to reconstruct pressure. Pressure fluctuations with amplitudes of down to $${\mathcal {O}}(1)~\text {Pa}$$O(1)Pa were extracted from time-resolved deflectometry data using temporal band-pass filters. Pressure transducer measurements allowed comparisons of the results with an established measurement technique. Even though the identified uncertainties in fluctuations were found to be as large as 50%, the spatial distributions of dynamic pressure events were captured well. Dynamic mode decomposition was used to identify relevant spatial information that correspond to specific frequencies. These dynamically important spatio-temporal events could be observed despite their low differential amplitudes. Finally, the limitations of the proposed pressure determination method and strategies for future improvements are discussed. Graphic abstract

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow dynamics of an axisymmetric impinging jet under two-frequency external forcing. A study by time-resolved PIV and DMD;International Journal of Heat and Fluid Flow;2023-10

2. Reconstruction of surface pressures on flat plates impacted by blast waves using the Virtual Fields Method;International Journal of Impact Engineering;2023-01

3. Surface Pressure Reconstruction in Shock Tube Tests Using the Virtual Fields Method;Thermomechanics & Infrared Imaging, Inverse Problem Methodologies, Mechanics of Additive & Advanced Manufactured Materials, and Advancements in Optical Methods & Digital Image Correlation, Volume 4;2022

4. Full field vibration measurements on a cantilever beam under impact using visible and infrared deflectometry;Applied Acoustics;2021-12

5. Post-Processing Deflectometry Grid Images Using Particle Image Velocimetry Analysis;Journal of Vibration and Acoustics;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3