Abstract
Abstract
We present a novel closed-circuit ultra-compact wind tunnel with an 8:1 contraction ratio and high flow quality. Its overall footprint area is less than half that of a conventional tunnel with the same test section size and same contraction ratio, enabling significantly smaller material and construction costs. The tunnel’s key features which enable the small footprint include a two-dimensional main diffuser, a minimum-length contraction, and expanding turning vanes with a 1.167:1 ratio in corner two and an aggressive 1.875:1 ratio in corner four. Separation in the latter is prevented using a screen and honeycomb integrated into each vane passage—the first time this has been used in a wind tunnel. The tunnel exhibits excellent flow quality with less than $$\pm 1$$
±
1
% mean flow variation in the test section core and a freestream turbulence level of 0.03% at 12 m/s over a 4 Hz–20kHz bandwidth.
Graphical abstract
Funder
National Foundation for Science and Technology Development
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献