Unsteady forcing of turbulence by a randomly actuated impeller array

Author:

Lawson John M.,Ganapathisubramani Bharathram

Abstract

AbstractWe investigate the unsteady forcing of turbulent flow in a well-stirred reactor using opposing arrays of pitched-blade impellers which randomly and independently reverse rotation. We systematically explore the dependence of the large-scale motions and the homogeneity and isotropy of the turbulence upon the forcing. We identify three dimensionless control parameters: the source fraction (the fraction of time spent in clockwise motion), the dimensionless forcing period and an impeller Reynolds number. We find the timescale of unsteady motion corresponds to the forcing period T, the average period of impeller reversal, independently of the impeller angular speed $$\varOmega$$ Ω and source fraction. As in jet-stirred tanks, unsteady forcing substantially increases the unsteady kinetic energy, energy dissipation, integral length scale and Taylor microscale Reynolds number ($$R_\lambda$$ R λ ) and improves the homogeneity and isotropy of the flow, provided the source fraction is chosen optimally and the forcing period is sufficiently large ($$\varOmega T > 10^3$$ Ω T > 10 3 ); impeller Reynolds number has a relatively small influence. The forcing period must be matched to angular speed: decreasing the forcing period below this threshold results in a less intense, more inhomogeneous turbulent flow. Spectra of two-point velocity increments demonstrate that unsteady energy injection is dominated by axial shear generated across impellers and becomes less prominent at smaller scales. However, even at $$R_\lambda \approx 354$$ R λ 354 , the signature of this unsteady forcing can still be detected in near-dissipation-range statistics. These observations provide insight into optimisation of forcing and the mechanism of energy transfer when using unsteady forcing to generate turbulence in confined vessels. Graphical abstract

Funder

H2020 Marie Sklodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3