Assessment of particle image velocimetry applied to high-speed organic vapor flows

Author:

Michelis T.,Head A. J.,Majer M.,Colonna P.,De Servi C.

Abstract

AbstractCompressible flows of fluids whose thermophysical properties are related by complex equations are quantitatively and can be qualitatively different from high-speed flows of ideal gases. Nonideal compressible fluid dynamics (NICFD) is concerned with these fluid flows, which are relevant in many processes and power and propulsion systems. Typically, NICFD effects occur if the fluid is an organic compound and its vapor state is close to the vapor–liquid critical point, at high-reduced temperature and pressure (even supercritical). Current design and analysis of devices operating in the nonideal compressible regime demand for validated simulation software, characterized in terms of uncertainty. Moreover, experiments are needed to further validate related theory. Experimental data are limited as generating and measuring these flows is challenging given their high pressure or temperature or both. In addition, flows of organic compounds can be flammable, can thermally decompose, and sealing may demand for special materials. Recently, more research has been devoted to the measurement of these flows using both intrusive and less intrusive techniques relying on optical access and lasers. The transparency and refractive properties of these dense vapors pose additional problems. The ORCHID (organic Rankine cycle hybrid integrated device) at the Aerospace Propulsion and Power Laboratory of Delft University of Technology is a closed-loop facility, used to generate a continuous nonideal supersonic flow of siloxane MM with the vapor at 4$${{\textrm{bar}}}$$ bar and 220 °C at the inlet of the test section. Within this work, we have employed particle image velocimetry for the first time to obtain the velocity field in a de Laval nozzle in such flows. Measured velocity fields (expanded uncertainty within 1.1% of the maximum velocity) have been compared with those resulting from a CFD simulation. The comparison between experimental and simulated data is satisfactory, with deviation ranging from 0.1 to 10 % from the throat to the outlet, respectively. This discrepancy is attributed to hardware limitations, which will be overcome in the future experiments. The feasibility of PIV with uncontrolled but fixed seeding density to measure high-speed vapors of organic vapors has been demonstrated, and future experimental campaigns will target flows for which nonideal effects are more pronounced, other paradigmatic configurations, and improvements to the measurement techniques.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3