Flow measurements in the wake of an adhering and oscillating droplet using laser-Doppler velocity profile sensor

Author:

Burgmann SebastianORCID,Dues Michael,Barwari Beawer,Steinbock Jonas,Büttner Lars,Czarske Jürgen,Janoske Uwe

Abstract

AbstractThe removal of droplets on surfaces by an (air-) flow is relevant, e.g., for cleaning processes or to prevent corrosion or damage of electronic devices. Still the condition for droplet movement is not fully understood. Droplets start to move downstream at a critical (air-) flow velocity vcrit. For increasing flow velocity, this process is related to a strong oscillation of the droplet. This oscillation is supposed to be a key mechanism for the onset of droplet movement in conjunction with the flow field around the droplet. We report on measurements in the wake of the adhering droplet by means of laser-Doppler velocity profile sensor and hot wire anemometry. Thanks to the excellent spatial and temporal resolution of laser-Doppler velocity profile sensor and its capability to measure bidirectional flows, a backflow region can be detected in the wake of the droplet. Therefore, it can be concluded that this backflow structure is the driving mechanism for the strong flow movement inside the droplet against channel flow direction found in previous work. Analyzing the frequency spectra of the flow velocity, it was found that the flow is also oscillating; frequency peaks are in the same range as for the contour oscillation. Based on frequency, diameter and flow velocity, a Strouhal number can be calculated. This Strouhal number is almost constant in the investigated regime of droplet volumes and is between 0.015 and 0.03. Therefore, it can be assumed that an aeroelastic self-excitation effect may be present that eventually leads to droplet movement. Graphic abstract

Funder

Bundesministerium für Wirtschaft und Technologie

Deutsche Forschungsgemeinschaft

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3