Comparison between shadow imaging and in-line holography for measuring droplet size distributions

Author:

Erinin Martin A.,Néel Baptiste,Mazzatenta Megan T.,Duncan James H.,Deike Luc

Abstract

AbstractA direct comparison of the droplet size and number measurements using in-line holography and shadow imaging is presented in three dynamically evolving laboratory scale experiments. The two experimental techniques and image processing algorithms used to measure droplet number and radii are described in detail. Droplet radii as low as$$r = 14$$r=14 µm are measured using in-line holography and$$r = 50$$r=50 µm using shadow imaging. The droplet radius measurement error is estimated using a calibration target (reticle) and it was found that the holographic technique is able to measure droplet radii more accurately than shadow imaging for droplets with$$r \le 625$$r625 µm. Using the measurements of droplet number and size we quantitatively cross-validate and assess the accuracy of the two measurement techniques. The droplet size distributions,N(r), are measured in all three experiments and are found to agree well between the two measurement techniques. In one of the laboratory experiments, simultaneous measurements of droplets ($$r \ge 14$$r14 µm, using holography) and dry aerosols ($$0.07 \lessapprox r \lessapprox 2$$0.07r2 µm, using an scanning mobility particle sizer and$$0.15 \lessapprox r \lessapprox 5$$0.15r5 µm using an optical particle sizer) are reported, one of the first such comparison to the best of our knowledge. The total number and volume of droplets is found to agree well between both techniques in the three experiments. We demonstrate that a relatively simple shadow imaging technique can be just as reliable when compared to a more sophisticated holographic measurement technique over their common droplet radius measurement range. The agreement in results is shown to be valid over a large range of droplet concentrations, which include experiments with relatively sparse droplet concentrations as low as 0.02 droplets per image. Advantages and disadvantages for the two techniques are discussed in the context of our results. The main advantages to in-line holography are the greater accuracy in droplet radius measurement, greater spatial resolution, larger depth of field, and the high repetition rate and short pulse duration of the laser light source. In comparison, the main advantages to shadow imaging are the simpler experimental setup, image processing algorithm, and fewer computer resources necessary for image processing. Droplet statistics like number and size are found to be very reliable between the two methods for large range of droplet densities,$${\mathcal {P}}_{r>50}$$Pr>50, ranging from$$10^{-4} \le {\mathcal {P}}_{r>50} \le 10^{-1}$$10-4Pr>5010-1cm$$^{-3}$$-3, when the two techniques are implemented as shown in this paper.

Funder

Division of Ocean Sciences, National Science Foundation, USA

Metropolis Initiative, Princeton University

Collaborative Institute for Modeling the Earth System, NOAA GFDL and Princeton University

National Science Foundation Graduate Research Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3