Author:
Tapia Silva Diego,Cooper Cole J.,Mandel Tracy L.,Khatri Shilpa,Kleckner Dustin
Abstract
AbstractMany problems in fluid mechanics require single-shot 3D measurements of fluid flows, but are limited by available techniques. Here, we design and build a novel flexible high-speed two-color scanning volumetric laser-induced fluorescence (H2C-SVLIF) technique. The technique is readily adaptable to a range of temporal and spatial resolutions, rendering it easily applicable to a wide spectrum of experiments. The core equipment consists of a single monochrome high-speed camera and a pair of ND: YAG lasers pulsing at different wavelengths. The use of a single camera for direct 3D imaging eliminates the need for complex volume reconstruction algorithms and easily allows for the correction of distortion defects. Motivated by the large data loads that result from high-speed imaging techniques, we develop a custom, open-source, software package, which allows for real time playback with correction of perspective defects while simultaneously overlaying arbitrary 3D data. The technique is capable of simultaneous measurement of 3D velocity fields and a secondary tracer in the flow. To showcase the flexibility and adaptability of our technique, we present a set of experiments: (1) the flow past a sphere, and (2) vortices embedded in laminar pipe flow. In the first experiment, two channel measurements are taken at a resolution of 512 × 512 × 512 with volume rates of 65.1 Hz. In the second experiment, a single-color SVLIF system is integrated on a moving stage, providing imaging at 1280 × 304 × 256 with volume rates of 34.8 Hz. Although this second experiment is only single channel, it uses identical software and much of the same hardware to demonstrate the extraction of multiple information channels from single channel volumetric images.
Publisher
Springer Science and Business Media LLC