Characterization of low levels of turbulence generated by grids in the settling chamber of a laminar wind tunnel

Author:

Romblad JonasORCID,Greiner Michael,Guissart Amandine,Würz Werner

Abstract

AbstractWind tunnel investigations of how Natural Laminar Flow (NLF) airfoils respond to atmospheric turbulence require the generation of turbulence, whose relevant characteristics resemble those in the atmosphere. The lower, convective part of the atmospheric boundary layer is characterized by low to medium levels of turbulence. The current study focuses on the small scales of this turbulence. Detailed hot-wire measurements have been performed to characterize the properties of the turbulence generated by grids mounted in the settling chamber of the Laminar Wind Tunnel (LWT). In the test section, the very low base turbulence level of Tuu ≅ 0.02% (10 ≤ f ≤ 5000 Hz) is incrementally increased by the grids up to Tuu ≅ 0.5%. The turbulence spectrum in the u-direction shows the typical suppression of larger scales due to the contraction between grids and test section. Still, the generated turbulence provides a good mapping of the spectrum measured in flight for most of the frequency range 500 ≤ f ≤ 3000 Hz, where Tollmien-Schlichting (TS)-amplification occurs for typical NLF airfoils. The spectra in v and w-direction exhibit distinct inertial subranges with slopes being less steep compared to the − 5/3 slope of the Kolmogorov spectrum. The normalized spectra in u-direction collapse together well for all grids, whereas in v- and w-directions the inertial- and dissipative subranges are more clearly distinguished for the coarser grids. It is demonstrated that the dissipation rate ε is a suitable parameter for comparing the wind tunnel turbulence with the atmospheric turbulence in the frequency range of interest. By employing the grids, turbulence in the range 4.4 × 10–7 ≤ ε ≤ 0.40 m2/s3 at free-stream velocity U = 40 m/s can be generated in the LWT, which covers representative dissipation rates of free flight NLF applications. In the x-direction, the spectra of the v and w-components develop progressively more pronounced inertial- and dissipative subranges, and the energy below f ≈ 400 Hz decreases. In contrast, the spectral energy of the u-component increases across the whole frequency range, when moving downstream. This behavior can be explained by the combination of energy transport along the Kolmogorov cascade and the incipient return to an isotropic state. Graphic Abstract

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studies on particle separation equipment – A review;INTERNATIONAL CONFERENCE ON INNOVATIONS IN ROBOTICS, INTELLIGENT AUTOMATION AND CONTROL;2023

2. In-flight measurement of free-stream turbulence in the convective boundary layer;Experiments in Fluids;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3